$5^{\text {th }}$ Grade Math

Module 4: Multiplication and Division of Fractions and Decimal Fractions

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Grade 5 Module 4 of Eureka Math (Engage_New York) covers Multiplication and Division of Fractions and Decimal Fractions. This newsletter will address Topic C.

Topic C. Multiplication of a Whole Number by a Fraction

Words to know

- Product
- Array
- Numerator
- Tape Diagram
- Denominator
- Commutative Property

Things to Remember:

- Product - the answer to a multiplication problem
- Array - to arrange or display
- Commutative Property - property that allows is to multiply factors in any order ($\frac{1}{2} \times 3$ is the same thing as $3 \times \frac{1}{2}$)

- To find $\frac{1}{4}$ of 12 , make an array with 12 circles.
- Use lines to divide the array into 4 equal groups.
- Write a division sentence to represent what was done.

$$
12 \div 4=3 \quad \text { or } \quad \frac{12}{4}=3
$$

- Each group is $\frac{1}{4}$ of all the circles.
- So $\frac{1}{4}$ of $12=3$

Objectives of Topic C

- Relate fractions as division to fraction of a set.
- Multiply any whole number by a fraction using tape diagrams.
- Relate fraction of a set to the repeated addition interpretation of fraction multiplication.
- Find a fraction of a measurement, and solve word problems.

Focus Area- Topic C

Module 4: Multiplication and Division of Fractions and Decimal Fractions Find $\frac{4}{5}$ of 15 . Draw a set/array to show your thinking.

There are 42 students going on a field trip. Three-sevenths are girls. How many are boys? How many are girls? Solve using a tape diagram.

The tape diagram shows that three sevenths of the 42 students are girls so the remaining pieces are boys which are 4 pieces or four sevenths.

Each unit is equal to 6 students. The girls are 3 of the 7 units. To find how many girls are on the field trip we multiply 3 units by 6 . 3 units $=6 \times 3=18$ students

There is a total of 18 girls on the field trip.
Boys are 4 of the 7 units. To find how many boys are on the field trip we multiply 4 units by 6.4 units $=6 \times 4=24$ students

There is a total of 24 boys on the field trip.
Check: 18 girls +24 boys $=42$ total students

$$
\frac{2}{3} \times 9
$$

Ways to interpret the above expression

1. 2 thirds of $9\left(\frac{2}{3} \times 9=\frac{2}{3}\right.$ of 9$)$

$$
\frac{2}{3}=\text { ? }
$$

$$
\begin{aligned}
& 3 \text { units }=9 \\
& \begin{aligned}
1 \text { unit } & =\frac{9}{3} \text { or } 9 \div 3 \\
& =3
\end{aligned} \\
& \begin{aligned}
2 \text { units } & =2 \times 3 \\
& =6
\end{aligned} \\
& \text { Answer: } \frac{2}{3} \times 9=6
\end{aligned}
$$

2. 9 copies of 2 thirds OR 2 thirds added together 9 times

$$
\begin{aligned}
& \begin{aligned}
&=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3} \\
&= \frac{2+2+2+2+2+2+2+2+2}{3} \\
&= \frac{9 \times 2}{3} \\
&=\frac{18}{3}
\end{aligned} \\
& \text { ANSWER } \longrightarrow
\end{aligned}
$$

Mrs. Collins baked 3 dozen cookies. Two-thirds of them were chocolate chip. How many chocolate chip cookies did she bake?

1 dozen is 12 cookies, so 3 dozen is 36 cookies (12×3)

$$
\frac{2}{3} \text { of } 36 \text { cookies }=
$$

\qquad chocolate chip cookies

Numerical Procedure:

$\frac{2}{3}$ of $36=\frac{2}{3} \times 36=\frac{2 \times 36}{3}=\frac{72}{3}=24$
$\frac{2}{3}$ of $36=\frac{2}{3} \times 36=\frac{2 \times 36}{\}_{1}}=\frac{24}{1}=24 \underbrace{\text { den }}_{\begin{array}{l}12 \\ \begin{array}{l}\text { Students look for } \\ \text { a factor that is } \\ \text { shared by the } \\ \text { numerator and } \\ \text { the denominator }\end{array}\end{array}}$

Solve the following problem using a tape diagram or an equation.

$$
\frac{1}{3} l b=
$$

\qquad
lb - pound
oz - ounce (16 oz is equal to 1 lb)

Tape Diagram

$$
\begin{aligned}
& 3 \text { units }=16 \\
& \begin{aligned}
1 \text { unit } & =\frac{16}{3} \text { or } 16 \div 3 \\
& =5 \frac{1}{3} \mathrm{oz}
\end{aligned}
\end{aligned}
$$

Equation

$$
\frac{1}{3} l b=\frac{1}{3} \times 1 l b
$$

We know that 16 ounces
is the same thing as 1 pound (lb), so we will

rename the pound in our
expression as ounces (oz). $\quad=\frac{1 \times 16}{3}$

$$
=\frac{16}{3}
$$

Amanda measured the length of one of her books. It was $\frac{3}{4}$ of a foot. How long is her book in inches?

$$
\begin{aligned}
& \mathrm{ft}-\text { foot } \quad \text { in }- \text { inches } \\
& \frac{3}{4} \text { of } 1 \text { foot }=\quad \text { inches }
\end{aligned}
$$

Equation:

$$
\frac{3}{4} \mathrm{ft}=\frac{3}{4} \times 1 \mathrm{ft}
$$

We know that 12 inches is the same thing as 1 $\longrightarrow \frac{3}{4}$ foot (ft), so we will rename the foot in our expression as inches (in).
$\rightarrow \frac{3}{4} \times 1 \mathrm{ft}=\frac{3}{4} \times 12$ inches

$$
\left.\begin{array}{l}
=\frac{3 \times 12}{4} \\
=\frac{36}{4}=9
\end{array}\right\}_{\mathrm{OR}}^{=\frac{3 \times \text { º }_{1}^{3}}{X_{1}}} \begin{aligned}
& =\frac{9}{1}=9
\end{aligned}
$$

